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SYNOPSIS 

A stepwise scheme, reported recently for the calculation of molecular weight distributions 
in AB monomolecular condensation polymers under the condition of unequal reactivity, 
has been applied to the more common AA, B B  bimolecular condensation polymers. In the 
scheme a condensation polymerization is arbitrarily subdivided into a number of steps. 
The polymer obtained in one step is treated as the monomer for the next step. In each of 
the steps, Flory's distribution for condensation polymer under equal reactivity is used as 
the molecular weight distribution for that step. Reactivity variances are incorporated into 
the calculation through the application of weighing factors on the concentrations of the 
reacting molecules in each of the steps. In the bimolecular case, three types of monomers, 
AA, BB, and AB, must be considered for the intermediate polymerization steps. The required 
distribution of this trimolecular condensation under equal reactivity conditions is not 
available and has to be derived. As expected, the application of the scheme to bimolecular 
condensation is more complex but numerical calculations using the scheme should still be 
manageable on a desktop computer with suitable memory capacity. 0 1993 John Wiley & 
Sons, Inc. 

INTRODUCTION 

Flory's ' well known molecular weight distribution 
(MWD) for condensation polymers was derived by 
assuming equal reactivity for all the functional 
groups regardless of the length of chains to which 
they were attached. The equal reactivity condition 
has been observed in most condensation polymer- 
izations' but it is not expected to apply when the 
rate of polymerization is controlled by diff i~ion.3~~ 

Unequal reactivity and other special conditions 
in condensation polymerization have been treated 
extensively. Both kinetic appro ache^^-^ and statis- 
tical have been used to  calculate 
MWD in these polymers. In some treatment~''-'~ 
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only the average molecular weights were deduced. 
More recently a stepwise scheme16 was shown to be 
useful for the calculation of MWD in condensation 
polymers prepared under several unusual conditions. 
The equations for applying the scheme were derived 
only for the simpler AB monomolecular condensa- 
tion polymerization. In this paper the application 
of the same scheme to the more common AA, BB 
biomolecular condensation polymers is discussed. 

In the stepwise scheme, a polymerization reaction 
is arbitrarily subdivided into a number of steps. The 
polymer obtained in one step is treated as the 
monomer for the next step. In each of the steps, 
Flory's distribution for condensation polymer under 
equal reactivity is used as the molecular weight dis- 
tribution for that step. Changes in reactivity are in- 
corporated into the calculation through the appli- 
cation of weighing factors on the concentrations of 
the reacting molecules in the steps. 

In an AB monomolecular condensation, Flory's 
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distribution is the simple “most probable” distri- 
bution and the resulting polymer chains all have A 
functionality at one end and B functionality at the 
other end. The polymer used as monomer for the 
intermediate steps is therefore also AB in function- 
ality. In an AA, BB bimolecular condensation, three 
types of polymer chains are formed. The chains with 
an even number in the degree of polymerization, x, 
have A functionality at one end and B functionality 
at the other end. The distribution of the even x 
chains is given by Ne ( x )  in eq. ( 1 ) .  The chains with 
an odd number of x, can have A functionality at 
both ends or B functionality at both ends. The dis- 
tribution of these two odd x chains is given by 
Noa(x)  and N o b ( x ) ,  in eqs. ( 2 )  and ( 3 ) .  

1 .  ( 3 )  
( 1 - r p )  2r -3/2 

1 + l / r  - 2p 
Neb (x) = pX-l  r ’1’ 

In the three distribution equations, r is the mole 
ratio of AA to BB, with BB representing the mono- 
mer in excess. It follows that r is always smaller 
than 1. The variable p is the fraction of A function- 
ality consumed in the polymerization; p is 1 if all of 
A are reacted. The overall number distribution N (  x) 
is the sum of N e ( X ) ,  N o a ( x ) ,  and N o b ( x ) .  In the 
stepwise scheme, only in the first step where the 
polymerization is truly bimolecular and the three 
Flory’s equations can be used to describe the dis- 
tribution of the resulting polymer. This first step 
generates three monomers, AA, BB, and AB, and 
for all the rest of the steps three monomers are at 
the start of each polymerization step. For these 
steps, new equations to describe the distribution in 
this AA, BB, AB trimolecular condensation polymer 
under equal reactivity have to be derived. 

DERIVATION OF THE DISTRIBUTION FOR 
TRIMOLECULAR CONDENSATION 

Let N,, Nbb, and Nab represent the starting moles 
of AA, BB, and AB monomers, respectively. The 
numbers of moles of A and B functionalities at the 
start, Na and Nb are 

Let z, be the fraction of A functionality on AA 
monomer. The fraction of A functionality on AB 
monomer is therefore 1 - z,. When A reacts with 
B, the probability that it is from an AA or from an 
AB monomer is therefore z, or 1 - za,  respectively. 
Similarly zb and 1 - z b  are used to designate the 
origin of B functionality. 

For convenience in the derivation, two conversion 
numbers, p a ,  the fraction of A reacted and Pb, the 
fraction of B reacted will be used. 

where N a  is the number of moles of A reacted and 
Nb, the number of moles of B reacted. The two p’s  
are not independent of each other as the nature of 
condensation reaction dictates that N a  is always 
equal to Nb. The conversion pa is the p in Flory’s 
eqs. ( 1 ) - ( 3 ) .  

The chains starting with A functionality at the 
end will be considered first. For x = 1,  the chain is 
the monomer AA and the number of moles of it, 
NAA ( 1 )  , should be the amount of monomer AA 
multiplied by the probabilities that neither of the A 
functionality has reacted. 

For x = 2, the chains can originate from two 
sources. One starts with AA and the other with AB. 
Since monomer AB is a dimer of AA with BB formed 
during the earlier condensation step, we use [ AABB ] 
for it in the representation below. The two possible 
chains are 

AA BB 
[AABB]. 

The moles of AA is N,. For one end of it un- 
reacted and the other end reacted, the probability 
is ( 1  - p a ) p a .  For the reacting A function to find a 
BB monomer instead of a BA monomer the prob- 
ability is z b  and for the other end of BB unreacted 
the probability is ( 1  - P b ) .  The number of moles 
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for the first chain is the product of all the proba- 
bilities times N ,  or 

the number of moles for the third chain is 

For the second chain, the number of moles of 
chains starting with an A of an AB monomer is ( 1 / 
2)  Nd times ( 1 - p a ) .  For the B end of AB remaining 
unreacted, the probability is ( 1 - p b )  . The number 
of moles of the second chain is therefore: 

The total number of moles for x = 2 is 

For x = 3, the possible chains are 

AA BB AA 
[ AABB ] AA 
AA [ BBAA] . 

For the first two chains, the configuration is the 
chains for x = 2 reacted with another AA monomer. 
Equation (9) can be rewritten as 

with CA(2) representing the expression in the 
brackets. The expression CA ( 2)  represents also the 
x = 2 chains with the B functionality at the end 
uncommitted. The number of moles of these un- 
committed chains to react with an A belonging to 
an AA monomer is 

This expression multiplied by the probability for the 
other end of AA remain unreacted is the total num- 
ber of moles of the first two chains 

Similarly the third chain can be considered as the 
chain of x = 1 reacted with another AB monomer. 
If eq. (8) is rewritten as 

The total number of moles for chains with x = 3 
starting with A functionality is 

with 

For x = 4, five chains are possible 

AA BB AA BB 
[ AABB] AA BB 
AA [ BBAA] BB 
AA BB [ AABB] 
[AABB] [AABB]. 

The first three chains are the chains with x = 3 
reacted with monomer BB and the last two are the 
chains with x = 2 reacted with monomer AB. There- 
fore for x = 4, 

or, 

with 

For x = 5, the number of possible chains is eight, 
which is the sum of the number of chains for the 
previous two DP’s. 

[ AABB] AA BB AA 
AA [ BBAA] BB AA 
AA BB [ AABB] AA 
[AABB] [AABBIAA 
AA BB AA [ BBAA] 
[AABB]AA[BBAA] 
AA [ BBAA] [ BBAA] . 
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By the same reasonings, the number of moles for x 
= 5 is: 

or 

with 

In general, the recursive equations for odd x are: 

and for even x are: 

Equations ( 1 2 )  and ( 1 4 )  are valid for all odd x 
‘or even x whereas eqs. ( 1 3 )  and ( 1 5 )  are valid for x 
> 2. The starting equations for the recursive eqs. 
( 1 3 )  and ( 1 5 )  are: 

The corresponding set of equations for chains 
starting with the B functionality can be deduced 
similarly: for odd x :  

for even x :  

and for the starting equations: 

The total moles of all chains Nt at conversion p a ,  is 
one half of the unreacted A and B. 

Equation ( 2 4 )  can be transformed to another 
form by using p for p a  and r as the ratio of Na to 
Nb. (Earlier r was defined as the ratio of moles of 
AA monomer to BB monomer for Flory’s distribu- 
tion eqs. ( I ) - (  3). It is restated here as the ratio of 
A functionality to B functionality.) 

Nt = - ( 1  + l / r -  2 p ) .  (3 
The expression in the parentheses in eq. (25) is 
identical to the denominators in Flory’s distribution 
eqs. ( 1 ) - ( 3 ) . The normalized distribution equations 
for trimolecular condensation under equal reactivity 
are obtained by applying Nt to eqs. ( 12) ,  ( 14) ,  ( 181, 
and (20). For even x :  

n n 

for odd x :  

A feature of the above derivation is that the func- 
tion N A B ( X )  should be identical to N B A ( x )  as they 
represent the same chain configurations. For even 
x ,  there should be no difference between chains 
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starting with an A function or a B function. For 
example when x = 2, 

Similarly 

The second terms in the two equations are identical. 
The first term in the brackets of the equation for 
NAB(2)  is 

The substitution for PaZb is by virtue of eqs. ( 4 ) ,  
( 6 ) ,  and ( 7 ) .  Similarly for N B A ( 2 )  

Because condensation polymerization dictates that 
the number of moles of A reacted, Nh, must be iden- 
tical to the number of moles of B reacted, Nb, 
N A B  ( 2 ) is identical to N B A  ( 2 ) . 

STEPWISE SCHEME FOR BIOMOLECULAR 
CONDENSATION 

The Two-step Scheme 

The two-step calculation is the basic element in the 
stepwise scheme. In the two-step calculation, a po- 
lymerization is taken to an intermediate conversion 
p 1  in the first step and to the final conversion p ( p  
is used interchangeably with p a )  in the second step. 
A polymerization can be subdivided into as many 
steps as needed to accommodate the varying reaction 
conditions. The multi-step scheme is the repeats of 
the two-step calculation as shown earlier l6 for the 
case of AB monomolecular condensation. 

In an AA BB bimolecular condensation, the dis- 
tribution eqs. ( 1 )  - ( 3 )  describe the polymer of the 
first step withp, asp in the equations. In the second 
step, the monomers are the polymers from the first 
step. Since three types of polymers AA, BB, and AB 
are produced in the first step and they are the 

monomers for the second step, Flory's eqs. ( 1 ) - ( 3 ) , 
are no longer applicable. 

Equations ( 2 6 )  - ( 2 8 )  now describe the distribu- 
tion of the trimolecular condensation in the second 
step. The conversion p z  for the second step is 

P -P1 
pz=-.  

1 -P1 

The conversions p ,  p l ,  and p2 all refer to the fraction 
of functionality A reacted. The r ratio for the first 
step is the same as that for the overall step, that is, 

rl = r .  

The r ratio for the second step r2 is 

Subscript 1 is used to denote variables for step 1; 
subscript 2 for variables for step 2; and variables 
without a numerical subscript are for the overall 
polymerization. This convention will be used for all 
other variables and functions. 

The calculation for the overall distribution N (  x )  
is the incorporation of the distribution of the first 
step N1 ( x )  into the distribution of the second step 
N2 ( x )  . This is the best illustrated by the example 
below for the case of overall DP 3 in the AB mono- 
molecular condensation. For the DP 3 member of 
the overall distribution N (  3 ) ,  three members in 
N2 ( x )  are contributing. They are N2 ( 1 ) , N2 ( 2 ) ,  and 
N2 ( 3 ) .  For N2 ( 1 ) to become N (  3 )  the monomer 
must be a DP 3 chain from step 1. Its concentration 
is given by N1 ( 3 ) .  The portion of N2 ( 1 )  that con- 
tributes to N (  3 )  is therefore the product of N2 ( 1 )  
and N1 ( 3 ) .  This chain is given by the first line below 
and the expression to the right is the contribution 
of this chain to the overall distribution N (  3 ) .  Un- 
derline is used to indicate a chain segment from a 
monomer of DP greater than 1 in the configuration. 
For N2 ( 2 )  one of the two monomers must be a DP 
1 chain and the other a DP 2 chain. Two possible 
permutations exist as depicted by the group of two 
chains below. Their contributions to N (  3 )  are given 
by the corresponding expressions at the right. For 
N2 ( 3 )  the three monomers must all be of DP 1 to 
give a total DP of 3. The last line below is this chain 
and its contribution to N (  3 ) .  The sum of all four 
expressions is the distribution N (  3 )  for the overall 
polymer. 
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The recursive equations for calculating all members 
of the distribution N ( x )  for monomolecular con- 
densation polymers were derived from the above 
consideration. 

For the bimolecular condensation, the logic is the 
same but the derivation has to deviate some from 
the above approach. In the second step of a bimo- 
lecular condensation, three monomers AA, BB, and 
AB are involved. The number of moles of AA for 
step 2 condensation, NW2 , is the sum of all polymers 
with A at both ends produced from step 1 polymer- 
ization, as given by the first equation below. Simi- 
larly the moles of BB and AB monomers in step 2 
polymerization are given by the other two equations 
below. 

The computation for the number of moles for each 
monomer is necessary because their relative 
amounts dictate the distribution of the resulting 
polymer. In AB monomolecular condensation, there 
is not such a need because only one monomer is 
involved. 

As in the case for the trimolecular condensation, 
chains starting with A functionality at the end will 
be treated first. The first member in this family of 
chains is AA, the AA monomer having survived re- 
actions in both polymerization steps. The DP for 
the second polymerization step, of course, is 1 and 
the number of moles of it is given by 

Equation (32)  is eq. (8)  cast in the variables for 
step 2 polymerization. The AA monomer for step 2 
consists of a family of polymer chains from step 1. 

Only the DP 1 member of these will give the desired 
final chain. Therefore the moles of AA for the overall 
two-step scheme, NAA ( 1 ) is 

In the monomolecular condensation the quotient 
in the above equation would simply be Nl ( 1 ) .  In 
the present case this quotient is not Neal ( 1 ) that is 
the distribution of AA normalized with respect to 
the entire population of the polymer from step 1. 
The normalization is with respect only to the chains 
from step 1 with A function at both ends. Let these 
specially normalized quotients be given by the sym- 
bols below 

The overall distribution for AA chain with DP 1 
can now be written as 

In the above equations, functions with a bar over 
the symbols are unnormalized functions. Because 
functions are not normalized uniformly in the pres- 
ent treatment, it is convenient to keep some un- 
normalized forms in the equations. 

For x = 2, the chains are the ones starting with 
A and ending with B. These chains can be formed 
by the dimerization of AA with BB as depicted by 
the first chain below or simply the unreacted AB 
monomer as depicted by the second chain. The 
brackets are used to indicate an AB monomer. 

AA BB 
[ AABB] . 

The number of moles for the above chains N A B 2  ( 2 ) 
resulting from trimolecular condensation is given 
by eq. (9) .  The contribution by the first chain to 
N A B 2  ( 2 ) is given by the first term in eq. (9  
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In order to give the overall chain a D P  of 2, the 
monomer AA and BB must both be of D P  1 from 
step 1. Therefore the contribution of the first chain 
toward N A B  ( 2 )  is given by 

The contribution by the second chain to N A B 2  ( 2  ) is 
given by the second term in eq. (9)  

For the second chain to have an overall D P  of 2, the 
AB monomer or [ AABB ] for step 2 must be also of 
DP2. Therefore its contribution towards NAB ( 2)  is 
given by 

The expression for N A B  ( 2)  is therefore 

The function N A B 2  ( 2 )  has been split into parts in 
the derivation of N A B  ( 2) .  The split was not involved 
in the treatment for the monomolecular condensa- 
tion. 

For x = 3, there are four ways to form the chains. 

AA BB AA 
[ AABB ] AA 
AA [ BBAA] 
AA BB AA. 

The D P  in step 2 polymerization is 3 for the first 
three chains. For the fourth chain, the D P  in step 
2 polymerization is 1 and the monomer AA itself 
has a D P  of 3. By following the same reasoning, we 
have 

with 

then the first two terms in eq. (35) can be written 
as 

Similarly eq. (33) can be converted to: 

with 

The third term in eq. (35)  can now be written as 

Substituting these expressions into eq. (35),  we have 

In coefficient A ( x ,  x ' )  , x is the D P  for the overall 
polymerization; x' is the D P  for step 2 polymeriza- 
tion. Using this convention, we rewrite eq. (35) as: 

with 

For x = 4 the chains to be considered are: 

AA BB AA BB 
[ AABB] AA BB 
AA [ BBAA] BB 
AA BB [AABB] 
[ AABB ] [ AABB ] 

If eq. (34)  is rewritten as: AA BB AA BB 
AA BBAABB 

J AABBAABB 1 
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The first group of five chains are from a DP of 4 
in step 2 polymerization and the second group of 3 
chains are from a DP of 2 in step 2 polymerization. 
The number of moles for DP 4 chains starting with 
A is 

In the first three chains in the first group of five 
are the A (3, 3) chains with B B  attached and the 
last two are A ( 2 , 2 )  chains with [ AABB ] attached. 
Therefore 

with 

Similarly for x = 6, we have 

with 
For the second group of chains 

Forx = 5 

AA BB AA B B  AA 
[ AABB] AA B B  AA 
AA [BBAA] B B  AA 
AA BB [AABB] AA 
[ AABB ] [ AABB ] AA 
AA B B  AA [ BBAA] 
[ AABB] AA [ BBAA] 
AA [ BBAA] [ BBAA] 

AA B B  AA B B  AA 
AA BBAABB AA 

JAABBAABB 1 AA 
AA B B  AA B B  AA 
[ AABB] AA BB AA 
AA BB AA [ BBAA] 
AA J BBAABBAA 1 

AABBAABBAA 

The chains are from DP of 5, 3, and 1 in step 2 
polymerization. The DP 5 group is formed from 
adding AA to A(  4,4) ,  and [ AABB] to A (  3 , 3 ) .  The 
DP 3 group are formed from adding AA to A (4, 2 ) ,  
A ( 2 , 2 ) ,  and [AABB] to A ( 3 , l )  a n d A ( 1 , l ) .  The 
chain for DP 1 is the chain formed from the mononer 
AA of DP 5 in step 1 polymerization. The number 
of moles for DP 5 chains starting with A is therefore 

The pattern for the recursive equations that 
emerges from the above is: for odd x’s 

with 

for even x’s 
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Similarly equations for chains starting with B 
functionality, are as follows: for odd x’s: 

with 

and for even x’s 

with 

The total number of chains for step 2 calculation 
is the same as that in eq. (24)  for trimolecular con- 

densation. With the proper subscripted symbols, eq. 
( 2 4 )  is now 

or in another form 

Nt2 = ( - ;2) ( 1  + l / r2  - 2p2) .  

The symbol Na2 is the total number of A function- 
alities before step 2 polymerization or 

The final distribution functions for the overall 
polymerization are 

( 4 9 )  

Verification of the Derivation 

As in the case for monomolecular condensation, l6 
the equations derived for the stepwise scheme can 
be tested for their validity by comparing the first 10 
members of the distribution calculated directly to 
those calculated by the two-step scheme. In Table 
I, the numbers in the columns marked “Direct)) were 
calculated from the Flory distribution eqs. ( 1 ) - ( 3 ) . 
For the 2-step calculations, eqs. ( 1 ) - ( 3 )  were used 
for the first step and eqs. ( 4 7 )  - ( 4 9 )  were used for 
the second step. There is total agreement between 
the numbers calculated by the two methods at p 
= 0.9, r = 0.9 and p1 = 0.45. For this case r2 is 
0.83193, p2  is 0.81818 for the second step. 

The same agreement can be demonstrated for 
other values of p ,  r ,  and pl. An example for low p 
and low r is given in Table 11. In this latter case r2 
is 0.48718, p2  is 0.05263 for the second step. 
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Table I Comparison of the First 10 Members of a Bimolecular Condensation Distribution Calculated 
Directly to That Calculated by the Two-step Scheme 

Noa(x) Nob(x) N 4 x )  
DP 

X Direct 2-Step Direct 2-Step Direct 2-Step 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.032143 0.032143 0.128929 0.128929 

0.023432 0.023432 0.093989 0.093989 

0.017082 0.017082 0.0685 18 0.068518 

0.012453 0.012453 0.049950 0.049950 

0.009078 0.009078 0.036413 0.036413 

0.109929 0.109929 

0.080138 0.080138 

0.058421 0.058421 

0.042589 0.042589 

0.031047 0.031047 

p = 0.9, r = 0.9, andp, = 0.45. 

DISCUSSION 

As suggested earlier, the stepwise scheme for the 
calculation of MWD in bimolecular condensation 
polymers is more complex than that for the mono- 
molecular condensation polymers. There are four 
equations to define the recursive relations versus 
only one in the case of monomolecular condensation. 
The complexity fortunately increased only by two- 
fold. In monomolecular condensation, the B ( x ,  i) 
array, with i varied from 1 to x ,  has the size of one 
half of a two-dimensional array. In bimolecular con- 
densation two such arrays, A ( x  , i) and B ( x ,  i) , are 
used in the calculation. If the calculation is carried 
out to a DP of 1000, each array will have 500,000 
members. Based on 8 bytes per number, the two 

arrays will occupy 8 MB memory. This still allows 
the calculation to be carried out on most desktop 
computers. 

Approaches for using the stepwise scheme to cal- 
culate the MWD in monomolecular condensation 
polymers prepared under three unusual conditions, 
unequal reactivity, limited monomer solubility, and 
endcapping at  late stages of the reaction were 
discussed16 before. The same approaches should be 
usable to treat these cases in bimolecular conden- 
sation. However, some specifics in the calculation 
will be different. For example in monomolecular 
condensation nearly all functions are self normal- 
ized. One can calculate the early part of a distri- 
bution and still obtain the correct normalized mem- 
bers of the distribution. In the bimolecular cases, 

Table I1 
Directly to That Calculated by the Two-step Scheme 

Comparison of the First 10 Members of a Bimolecular Condensation Distribution Calculated 

Noa(x) Nob(x) N 4 x )  
DP 

X Direct 2-Step Direct 2-Step Direct 2-Step 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.289286 0.289286 0.644643 0.644643 

0.001446 0.001446 0.003223 0.003223 
0.061071 0.061071 

0.000305 0.000305 
7.233-06 7.233-06 1.613-05 1.613-05 

1.533-06 1.533-06 
3.623-08 3.623-08 8.063-08 8.063-08 

7.633-09 7.633-09 
1.81E-10 1.813-10 4.033-10 4.033-10 

3.823-11 3.823-11 

p = 0.1, r = 0.5, andp, = 0.05. 
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the functions are mostly not self normalized. Cal- 
culations must be carried out for the entire distri- 
bution before the normalization factor can be com- 
puted. The purpose of using an endcapping agent 
will also be different. In monomolecular condensa- 
tion endcapping is a convenient way to control the 
molecular weight. Without an endcapping agent, the 
reaction must be interrupted at  a precise degree of 
conversion to ensure the proper molecular weight 
for the product, a feat which is difficult to be carried 
out experimentally. In bimolecular condensation, 
molecular weight can be controlled by adjusting the 
relative concentrations of the two monomers. End- 
capping may have the desired purpose of masking 
the functional group on the ends of the chains but 
may not necessarily be a part of the polymerization 
scheme. 

CONCLUSIONS 

The equations for applying the stepwise scheme to 
the more common AA, BB bimolecular condensation 
polymers have been derived. This stepwise scheme 
is the same as that demonstrated earlier16 for the 
calculation of MWD in the AB monomolecular con- 
densation polymers. These equations are expected 
to be useful in calculating the MWD in polymers 
prepared under unusual conditions including those 
prepared under the condition of unequal reactivity. 

Required in the derivation were the equations for 
the distribution of AA, BB, AB trimolecular con- 
densation polymers prepared under equal reactivity. 
These equations have also been derived. 

Proof of validity for the equations of the stepwise 
scheme was provided by comparing the first 10 
members of a distribution calculated by the stepwise 
scheme to those calculated directly by the Flory 
equations.' 

As expected the scheme for bimolecular conden- 
sation is more complex than that for monomolecular 
condensation but numerical calculations using the 
scheme should still be manageable on desktop com- 
puters with suitable memory capacities. 
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